28 research outputs found

    Symmetric and asymmetric action integration during cooperative object manipulation in virtual environments

    Get PDF
    Cooperation between multiple users in a virtual environment (VE) can take place at one of three levels. These are defined as where users can perceive each other (Level 1), individually change the scene (Level 2), or simultaneously act on and manipulate the same object (Level 3). Despite representing the highest level of cooperation, multi-user object manipulation has rarely been studied. This paper describes a behavioral experiment in which the piano movers' problem (maneuvering a large object through a restricted space) was used to investigate object manipulation by pairs of participants in a VE. Participants' interactions with the object were integrated together either symmetrically or asymmetrically. The former only allowed the common component of participants' actions to take place, but the latter used the mean. Symmetric action integration was superior for sections of the task when both participants had to perform similar actions, but if participants had to move in different ways (e.g., one maneuvering themselves through a narrow opening while the other traveled down a wide corridor) then asymmetric integration was superior. With both forms of integration, the extent to which participants coordinated their actions was poor and this led to a substantial cooperation overhead (the reduction in performance caused by having to cooperate with another person)

    3D Collaborative Virtual Environments over the Web

    No full text

    The London Travel Demonstrator

    No full text

    Delayed State Consistency in Distributed Virtual Environments

    No full text

    ON WEYL GROUPS IN MINIMAL SIMPLE GROUPS OF FINITE MORLEY RANK

    No full text
    We prove that generous non-nilpotent Borel subgroups of connected minimal simple groups of finite Morley rank are self-normalizing. We use this to introduce a uniform approach to the analysis of connected minimal simple groups of finite Morley rank through a case division incorporating four mutually exclusive classes of groups. We use these to analyze Carter subgroups and Weyl groups in connected minimal simple groups of finite Morley rank. Finally, the self-normalization theorem is applied to give a new proof of an important step in the classification of simple groups of finite Morley rank of odd type
    corecore